解密人脸识别技术算法原理-奥比中光人脸识别

  • 2018-03-15

    奥比中光成立于2013年,专注于3D传感及人工智能视觉技术,可为用户提供3D传感摄像头、3D人脸识别、3D结构光、3D扫描、3D视觉、机器人视觉、客厅生态等产品及行业解决方案,是人工智能3D传感领域独角兽企业。

    今天小编给集合网络中的一些收集的到关于人脸识别技术知识分享给大家,如下:

人脸识别算法

    人脸识别主要算法原理

    主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。

    1.基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;

    2.基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。

    3.基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。

    1.基于几何特征的方法

    人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。Jia等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。

    采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。

    可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。

    这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。

    2.局部特征分析方法(LocalFaceAnalysis)

    主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。基于这种考虑,Atick提出基于局部特征的人脸特征提取与识别方法。这种方法在实际应用取得了很好的效果,它构成了FaceIt人脸识别软件的基础。

    3.特征脸方法(Eigenface或PCA)

    特征脸方法是90年代初期由Turk和Pentland提出的目前最流行的算法之一,具有简单有效的特点,也称为基于主成分分析(principalcomponentanalysis,简称PCA)的人脸识别方法。

    特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。

    实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中生成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。

    基于特征分析的方法,也就是将人脸基准点的相对比率和其它描述人脸脸部特征的形状参数或类别参数等一起构成识别特征向量,这种基于整体脸的识别不仅保留了人脸部件之间的拓扑关系,而且也保留了各部件本身的信息,而基于部件的识别则是通过提取出局部轮廓信息及灰度信息来设计具体识别算法。现在Eigenface(PCA)算法已经与经典的模板匹配算法一起成为测试人脸识别系统性能的基准算法;而自1991年特征脸技术诞生以来,研究者对其进行了各种各样的实验和理论分析,FERET'96测试结果也表明,改进的特征脸算法是主流的人脸识别技术,也是具有最好性能的识别方法之一。

    该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。其技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。Turk和Pentland提出特征脸的方法,它根据一组人脸训练图像构造主元子空间,由于主元具有脸的形状,也称为特征脸,识别时将测试图像投影到主元子空间上,得到一组投影系数,和各个已知人的人脸图像比较进行识别。Pentland等报告了相当好的结果,在200个人的3000幅图像中得到95%的正确识别率,在FERET数据库上对150幅正面人脸象只有一个误识别。但系统在进行特征脸方法之前需要作大量预处理工作如归一化等。

    在传统特征脸的基础上,研究者注意到特征值大的特征向量(即特征脸)并不一定是分类性能好的方向,据此发展了多种特征(子空间)选择方法,如Peng的双子空间方法、Weng的线性歧义分析方法、Belhumeur的FisherFace方法等。事实上,特征脸方法是一种显式主元分析人脸建模,一些线性自联想、线性压缩型BP网则为隐式的主元分析方法,它们都是把人脸表示为一些向量的加权和,这些向量是训练集叉积阵的主特征向量,Valentin对此作了详细讨论。总之,特征脸方法是一种简单、快速、实用的基于变换系数特征的算法,但由于它在本质上依赖于训练集和测试集图像的灰度相关性,而且要求测试图像与训练集比较像,所以它有着很大的局限性。


分享到: